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ABSTRACT 

 

In multiview 3D TV, a pair of corresponding pixels in adjacent 2D views contributes to the 

reconstruction of voxels (3D pixels) in the 3D scene. We analyze this reconstruction process and 

determine the optimal pixel aspect ratio based on which the estimated object position can be improved 

given specific imaging or viewing configurations and constraints. By applying mathematical modeling, 

we deduce the optimal solutions for two general stereo configurations: parallel and with vergence. We 

theoretically show that a non-uniform finer horizontal resolution, compared to the usual uniform pixel 

distribution, in general provides a better 3D visual experience for both configurations. The optimal value 

may vary depending on different configuration parameter values. We validate our theoretical results by 

conducting subjective studies using a set of simulated non-uniformly discretized red-blue stereo pairs and 

show that human observers indeed have a better 3D viewing experience with an optimized vs. a non-

optimized representation of 3D-models.  
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1. INTRODUCTION 

Over the past few years, 3D TV technologies have received increasing public attention with wide 

applications in IMAX and entertainment centres. Research in this area covers issues relating to 3D video 

capture, transmission, and display [1],[2],[3],[4],[5]. Extensive research has also been conducted on 

designing 3D displays including studies on display screen aspect ratio [6]. These studies show that screen 

dimension with width:height ratios between 5:3 and 6:3 are more visually pleasant to the viewers [7]. In 

this regard, wider displays provide a better sensation of depth even with 2D images. This observations 

have led to designing wider screens for HDTV displays compared to previous generation TVs [6]. 

Different from the screen aspect ratio, a square pixel component with an aspect ratio of 1:1 is usually 

adopted by 2D digital media devices, although research suggested that non-uniform pixel aspect ratios 

can create better visual experience [9]. Despite this observation, there is not much work addressing the 

problem of determining an appropriate aspect ratio of pixels with respect to the parameters affecting the 

3D picture formation process on (auto)stereoscopic displays. By default, similar to conventional 2D 

displays, square pixels have been adopted to compose different views of 3D displays; whereas, such an 

arbitrary decision may not be consistent with the underlying depth perception inherent in the human 

visual system. 

Differing from conventional 2D displays, the output of a stereoscopic 3D display is constructed based 

on two or more different views of the same scene. That is, the 3D points of the reconstructed virtual 3D 

scene are computed based on the corresponding pixels of adjacent 2D views. Since discrete pixels are 

involved in 3D point reconstruction, discretization error [8], [9], [10] is expected in the 3D point 

estimation process. The magnitude of this error depends on the inter-pixel distance in the 2D views and 

the viewing distance. For 3D displays, discretization is closely related to the 3D resolution or stereoscopic 

resolution which is defined in terms of the precision in locating 3D points within the comfortable viewing 

range of the 3D display [11]. The magnitude of this error depends on the inter-pixel distance in the 2D 

views and is proportional to the viewing distance. In other words, the discretization error, or equivalently 
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stereoscopic resolution on each 3D coordinate component (horizontal, vertical, and depth resolution), is 

directly related to the size of pixels; and depending on the stereo configuration parameters the relative 

width and height of a pixel can affect the amount of these errors differently. Since the horizontal and 

vertical discretizations contribute separately to the 3D point estimation error, given a total display 

resolution the challenge is to compute an optimal horizontal vs. vertical discretization in a unit area (pixel 

aspect ratio) that can minimize the error, in order to maximize the 3D-display viewing quality without 

changing the total resolution. This optimization issue is important especially for multi-view 3D displays, 

which provide several different 3D views (currently 6-9 views) and require several 2D images as input (7-

10 images for 6-9 3D views). 

In this paper, we study the abovementioned optimization problem for different stereo configurations. 

We extend our earlier research [8, 9, 10, 12, 13] and conduct subjective studies using two stereo 

configurations: parallel and with vergence. We show that the aspect ratio of pixels for optimizing 3D 

reconstruction can vary significantly in different configurations. Moreover, based on the physical pixel 

grouping technique, we present methods that simulate 3D viewing with different pixel aspect ratios on 

conventional 2D displays. These methods enable us to conduct human observer evaluations on both 

simple and complex 3D objects. Our evaluation results, which are consistent with our theoretical 

derivations, show that given a constant total resolution it is possible to improve the 3D visual experience 

by choosing a finer horizontal resolution relative to the vertical display resolution. The optimal value may 

vary depending on the parameter settings. In our implementation, we follow the usual viewing conditions 

to specify these parameters. 

The remainder of this paper is organized as follows: Section 2 formally defines the problem and 

notation used in this paper. Section 3 discusses optimal discretization for a single 3D point with and 

without vergence. Results obtained in Section 3 are extended in Section 4 to determine the optimal aspect 

ratio within the viewing volume inside a camera’s field of view. Experimental results and subjective 

studies are described in detail in Section 5.  Finally, concluding remarks and suggestions for future work 

are outlined in Section 6. 
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2. PROBLEM DEFINITION AND NOTATION 

We use the same notation and definitions as in our earlier publications (see Figures 1 and 2): 

 f: focal length of both cameras. 

 ),,( ZYX : a 3D point, and )ˆ,ˆ,ˆ( ZYX : estimated 3D position. 

 (xl, yl): projection of a 3D point on the left image. 

 (xr, yr): projection of a 3D point on the right image. 

 ex (ey): distance between two neighboring pixels (picture elements or viewing elements) in the x (y) 

direction. 

 bx: baseline of a stereo imaging setup. 

 R: total resolution, i.e., the total number of pixels or viewing elements being used for stereo capture 

or viewing. 

Using triangulation rules, the image projections of a 3D point on the left and right image screens in 

parallel geometry (Figure 1) are given by: 
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Thus, a 3D point location ),,( ZYX  can be computed as: 

Figure 1: Left: parallel-camera stereo projection with baseline bx. Right: discretization error. 
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In practice, since the image projections are discretized to the nearest pixel, location of a 3D-point is 

determined using points )ˆ,ˆ( yxr  and )ˆ,ˆ( yxl . Therefore, the location of a 3D-point (X,Y,Z) is estimated as:  
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For cameras with vergence (Figure 2), the location of a 3D point ),,( ZYX  can be computed using 

following formulae (see [10] for details): 
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Again, because of discretization error )ˆ,ˆ( rr yx  and )ˆ,ˆ( ll yx will be used in the computations resulting in an 

estimation error with respect to the original 3D point. 

Figure 3 shows the error pattern for two camera configurations (left: parallel geometry and middle: 

vergence geometry). Figure 3 (right) illustrates a 3D-view of an error generated by two corresponding 

pixels. The quadrilateral volume corresponds to a voxel (3D pixel). Obviously, reducing the pixel size and 

thus increasing the total resolution will reduce the voxel size as well as the 3D point estimation error. 
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Figure 2: Left: Stereo camera projection with vergence and baseline bx. Right: discretization error. 
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However, assuming a constant total resolution R, it is reasonable to look for an optimal pixel aspect ratio 

which minimizes the size of voxels or equivalently the discretization error inside the viewing region. Such 

optimization can improve the output image quality of a typical 3D TV system while the size of the input 

data is unchanged. The optimal solution can also be used in solving the stereo based depth estimation 

problem, which has been a research focus in the past decades [14], [15]. 

 

3. OPTIMAL DISCRETIZATION FOR A SINGLE 3D POINT ESTIMATION 

As mentioned in the previous section, the discrete nature of a display device (or viewing screen) leads to 

rounding. The rounding error is bounded by half a pixel. Thus, in the worst case: 
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Considering the stereo setup with parallel configuration (shown in Figure 1), and the worst-case error in 

3D estimation, which will be our default assumption in the rest of this paper, we obtain Ẑ from Equations 

3 and 5 (as explained in [8]): 
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The Taylor series expansion of Equation 6 about Z = 0 is given by: 
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Figure 3: Discretization error patterns. Left: parallel-axes stereo. Middle: stereo with vergence. Right: 3D-view of 

error pattern for two corresponding pixels. 
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In practice f and bx values are much greater than values taken by ex. Therefore, we can assume that the 

higher order terms in the above expansion are negligible. As result, Ẑ  can be properly approximated as: 
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Bounds on error in estimating X can be obtained as follow: 
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Similarly, for Y: 
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Considering a unit viewing or image capture area: 

 
Re

eR
ee x

y

yx

1
or    

11























  ( 10 ) 

From Equations 9 and 10 we have: 
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From Equation 8 it is obvious that the best solution which minimizes the estimation error of X or Z is to 

have ex as small as possible. Unfortunately, it is also the worst possible choice for estimating the Y 

component. As a compromise, Equation 11, which is the upper bound of the relative estimation error in Y 

as a function of ex constrained by the total resolution R through Equation 10, can be used to find the best 

vertical vs. horizontal resolution tradeoff for estimating Y. The advantage of using relative versus absolute 

estimation error in the optimization process is to offset the monotonic increase of absolute error in the 

vertical direction from the center of the image plane, and allows the discretization optimization problem 
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to be studied independent of the pixel location on the image plane. Our analysis motivates the derivations 

of a Mathematical model given below. 

Result 1 – Optimal discretization for a single 3D point and parallel configuration: Considering the 

parallel stereo configuration in Figure 1, the optimal discretization for estimating Y for a single 3D point 

is: 
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Derivation: The results are obtained by equating the derivative of fp(ex) in Equation 11 to zero to 

minimize the error: 
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Solving Equation
 
13

 
in terms of

 
ex gives the value of ex in Equation

 
12. To show that the function fp 

achieves the minimum value at this point we need to perform the second derivative test. From Equation
 

13 the second derivative of fp in terms of ex is calculated as:
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Figure 4: Comparing discretization error pattern and changes of error in estimation of Y for regular square pixels, 

ex = ey, (left) vs. vertically rectangular pixels, ex < ey, with optimal pixel aspect ratio (right). 
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On the other hand, from Equation 10 we can see that ex changes over the open interval (0,∞) which means 

that ex always takes positive values. Since the other two parameters involved in the above equation are 

also positive, the second derivative of fp is always positive over the domain of possible values for ex. As a 

result, fp is strongly convex over this domain and takes its minimum value at ex given by Equation 12. The 

value of ey in Equation 12 can be obtained from ex by applying Equation 10. 

 

The solution that is obtained in this way is not only optimal in terms of the maximum relative estimation 

error on Y, but often yields better estimates for the X and Z components as well. From 12 the ratio of ex to 

ey can be calculated as: 
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In Equation 14, (xr – xl) is the amount of the disparity between the corresponding points in the left and 

right image planes. It should be clarified that xr and xl in above-mentioned equations are measured with 

respect to the corresponding camera coordinate system. As result, and as can be also deducted from 

Equation 2, (xr – xl) is always greater than or equal to zero. 

The amount of disparity (xr – xl) in most (practical) cases is smaller than 2|y|. This means that in 

practice the ratio in Equation 14 is usually less than one or equivalently ex is often smaller than ey. As a 

result, the optimal solution in Result 1 often improves the estimates of the X and Z components. However, 

when ex < ey the optimal solution changes the error pattern so that the Y estimation error may be increased 

for some 3D points estimated by )ˆ,ˆ,ˆ( ZYX . This phenomenon is pictorially illustrated in Figure 4 for a 

typical error pattern. As shown in Figure 4, the optimal pixel aspect ratio less than one (i.e. ex < ey) results 

in improvement in estimation of X and Z plus reduction of the maximum error in estimation of Y, which 

in turn means improvement of estimation of Y for some 3D points. But generally this is achieved in the 

cost of degradation in the estimation of Y for some other 3D points. 
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Now we focus on the stereo setup with vergence, shown in Figure 2. We start with some auxiliary 

derivations as follow. 

Auxiliary Result 1 (AR1): Assuming a small vergence angle α, the estimated depth Ẑ  of a 3D point for 

the vergence configuration (Figure 2) can be related to the true depth Z by: 
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Derivation: From Equation 4, Z is estimated as: 
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Using the same approach as the case without vergence: 
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Assuming that   0sin2 xe for a small vergence angle : 
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AR2: Assuming a small vergence angle α, for the vergence configuration the estimated depth of a 3D 

point is bounded by: 
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Derivation: Similar to the parallel configuration case (Equation 6) the Taylor expansion of Equation 15 

about Z = 0 can be calculated. Assuming a small vergence angle  the higher order terms in the Taylor 

series expansion can be ignored and Ẑ can be properly approximated as: 
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Expanding the second term of Equation 17 and ignoring higher order terms, we have: 
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Similarly, for the third term: 
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From Equations 17, 18, and 19: 

 












































 








































tan11

tan
)(

2
2

1

tan1
1

2
tan1

1

2
1ˆ

max

f

x

fb

Ze
Z

f

xx

fb

Ze
Z

f

x

fb

Ze

f

x

fb

Ze
ZZ

x

x

lr

x

x

l

x

xr

x

x

 
( 20 ) 

where 






 


2
maxmax

lr xx
x  is half of the maximum possible horizontal disparity, which is in fact equal to 

the maximum possible value of x or equivalently half of the image plane (or display) width.  

AR3: Assuming a small vergence angle α: 
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Derivation: For a small vergence angle , the parallel configuration formulae can be used to approximate 

the Y  component. Therefore: 
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Considering a total resolution of R, Equation 21 can be obtained from Equations 10 and 22.  
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Summarizing the abovementioned derivations, the following result can be stated for a stereo 

configuration with vergence. 

Result 2 – Optimal discretization for a single 3D point and stereo setup with vergence: Considering a 

stereo system with a small vergence angle  (Figure 2), the optimal discretization for a single 3D point 

can be obtained as: 
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Derivation: Similar to the parallel configuration, from Equation 21: 
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The results can be obtained by equating 24 to zero, and solving it in terms of ex . The same argument as 

Result 1 can be applied to show that fv indeed takes its minimum value at this point, considering the 

domain of permissible values for ex.  

 

4. OPTIMIZING WITHIN A VIEWING VOLUME 

The derivations in the last section consider optimization with respect to a single 3D point. Instead, we 

need to consider a region in 3D defined by a set of constraints on the range of values in depth, height and 

the stereo Field-Of-View (FOV). Obviously, the particular values obtained for ex (or ey) in the previous 

section will not be optimum for all points satisfying these constraints. A solution to this problem could be 

calculating the integral of the error function fp or fv over the entire specified region. However, this 

approach leads to logarithmic terms which complicate further steps in the optimization process. Instead, 

we consider minimizing an appropriate error metric subject to the restrictions imposed.  

For the parallel camera configuration (Figure 1), we use Equation 13 to obtain such an error metric. In 

this case, from Equation 13 for the optimal discretization ex for a single 3D point we have: 
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or equivalently,  
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In other words, for a single 3D point, the derivative of fp or equivalently the right side of Equation 25 is 

zero at the optimal discretization and non-zero in its neighbourhood. This, in fact, gives a distance 

criterion that can be used as an error metric for optimizing the discretization error over the entire region. 

We define the square of this distance as the error metric, as follow: 
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On the other hand, for parallel configuration the range of values of X varies with changes of depth Z and 

values of the cameras’ field of view by the following simple relationship (see Figure 5-left): 
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Thus, we need to optimize the following function w.r.t. ex :  
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Calculating the integral in 28 and equating its derivative to zero gives us the following result: 

Result 3 – Optimal discretization for a viewing volume and parallel configuration: Considering the 

abovementioned notation and the parallel stereo configuration given in Figure 5-left, and assuming a 

reasonably large viewing volume across the Z dimension, the discretization in x for optimizing the 

average error in estimation of Y is given by: 
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where, 
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Derivation: See Appendix A.  

 

Determining the range of values of X when Z varies over a specific domain is a little more complicated 

for the vergence configuration (see Figure 5-right). This is because between Z0 to Zint the values of X vary 

in a certain way, and for Z > Zint the values of X vary in a different way. The values of Z0 and Zint are 

given through the following equations. 

AR4: Given a field of view θ and a vergence angle α: 
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Derivation: Follows from Figures 5 and 6, using simple geometric rules, such as the sine rule. Details are 

skipped here.  

Figure 5: Viewing region without (left) and with vergence (right). 
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AR5: Considering the setup with vergence in Figure 5-right, the range of values of X, depending on depth 

Z and the field of view of the cameras, varies based on the following rules: 
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(It is assumed that the X-axis is the dashed line joining the centers’ of the two cameras.) 

Derivation: Follows from trigonometric rules and the earlier derivations. Details are skipped here.   

Here again, we need to consider an appropriate error metric to minimize over the range of possible X, Y, 

and Z values. Similar to the parallel configuration scenario, we use the following error metric based on 

the derivative in Equation 24: 
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We thus need to optimize the following function w.r.t. ex (from this point forward, for simplicity we 

ignore subscript r in yr): 
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Figure 6: A close-up of Figure 5 (bottom right) illustrating its geometric constraints. 
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Unlike the multiple integral in Equation 28, the computation of the integral above may need to be divided 

into two parts depending on the values of Zmin and Zmax relative to Zint. If  Zint ≤ Zmin or Zmax ≤ Zint, we need 

to consider either Equation 33 or Equation 34 in computing this integral. However, if Zmin < Zint < Zmax, 

then we must consider both Equations 33 and 34. 

By calculating Fv(ex) in these three possible cases and equating corresponding derivatives to zero, we 

can obtain optimal discretization for all cases (see Appendix A for details). Thus, we can state the 

following general result. 

Result 4 – Optimal discretization for a viewing volume and stereo setup with vergence: Considering 

the abovementioned notation and the stereo system framework in Figure 5-right, and assuming a 

reasonably thick viewing volume across the Z dimension, the discretization in x for optimizing the 

average error in estimation of Y is given by: 

I) Zint ≤ Zmin 
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III) Zmin < Zint < Zmax 
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I1 to I4 are equations defined in Result 3. 
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Derivation: See Appendix A.  

 

5. EXPERIMENTAL RESULTS 

5.1. NUMERICAL RESULTS 

Table 1 shows a typical set of parameter values used for calculating optimal pixel aspect ratios (ex/ey) 

for with and without vergence stereo setups. Values of xmax, ymax, and R are set to 3.15 mm, 2 mm and 

40635 pixels per mm
2
, respectively. These values are obtained assuming that a CCD of size 6.3 x 4.0 mm 

and a resolution of 1280 x 800 (around 1 mega pixel) is used in the capturing process. Focal length and 

stereo baseline are respectively set to 17 and 65 mm, which are close to the human visual system 

parameters. Table 1 also includes the range of values used for Zmin and Zmax in our calculations. Figure 7 

shows the results of our calculations for parameter values in Table 1 based on Result 3 and Result 4 and 

other related formulae. Figure 7-left shows how optimal aspect ratio changes with different viewing 

volumes at different distances in the parallel configuration. Figure 7-right presents corresponding results 

in the vergence configuration using three different small vergence  angles,  = 1, 3, and 5 degrees, over 

the same depth ranges and viewing volumes. The corner of the original graph is magnified in order to 

highlight the effect of applying different vergence angles. It can be seen that for small vergence angles 

there is no significant difference either between the left and right graphs or between results obtained for 

different small vergence angles on the right graph. Based on this observation, we can say that at least for 

small vergence angles the effect of vergence in determining the optimal pixel aspect ratio is negligible. It 

should be noted that for a stereo baseline of 65 mm, a 5 degree vergence angle is equivalent to focusing 

on a point about 371 mm from cameras/viewing point, which is a good representation of a practical 

Table 1: Parameters’ values used for calculating optimal pixel aspect ratio. 

Parameter Value Parameter Value 

f 17 mm Zmin From 200 mm to 600 mm 

bx 65 mm Zrange (Zmax- Zmin) From 1 mm to 2000 mm 

xmax 3.15 mm Resolution (R) 1280x800 (40635 p/mm
2
) 

ymax 2 mm   
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situation. 

Another observation from these graphs is how the optimal aspect ratio changes relative to the viewing 

range start point (Zmin) and length of the viewing range (Zmax - Zmin). For closer start points with smaller 

viewing ranges, a larger optimal ratio is obtained; but, if the start point is far enough or the viewing range 

Table 2: Some optimal aspect ratios calculated for parameter values mentioned in Table 1, for both with and without 

vergence configurations. 

Row Zmin (mm) Zmax (mm)  (Degree) Z0 (mm) Zint (mm) K ex/ey 

1 200 1000 0 175.3968 - - 0.6315 

2 180 650 0 175.3968 - - 0.9007 

3 500 2500 0 175.3968 - - 0.2687 

4 200 1000 3 135.3982 599.4954 1.0097 0.5844 

5 200 940 5 117.2110 359.0514 1.0162 0.6153 

6 180 650 3 135.3982 599.4954 1.0097 0.9538 

7 180 650 5 117.2110 359.0514 1.0162 0.8747 

8 500 2000 3 135.3982 599.4954 1.0097 0.3143 

9 500 2000 5 117.2110 359.0514 1.0162 0.3718 

Figure 7: Variation of optimal pixel aspect 

ratio for parameter values listed in Table 1.  

 

Top: parallel camera configuration.  

 

Bottom: vergence camera configuration 

(vergence angles  = 1, 3, and 5 degrees). 

 = 5 

 

 = 3 

 

 = 1 
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is large enough, a smaller aspect ratio is obtained. Moreover, from these graphs we can see that even 

though the optimal points are obtained by optimization of the relative error in estimating the Y 

component, the optimal aspect ratio is smaller than one in most configurations (and in fact in more 

practical configurations), which means that the X and Z estimates are improved as well, compared to a 

uniform pixel distribution over the x and y axes. 

Table 2 presents a set of optimal aspect ratios and some other parameters calculated for a number of 

typical start points and viewing ranges. As mentioned before, the optimal ratio may vary significantly 

depending on viewing distance and volume. We therefore focus on closer objects in the optimization 

process. For example, if we optimize for an object appearing between 200 to 1000 mm, i.e. within one 

meter of the viewer/camera (Table 2 – row 1), then the optimal pixel aspect ratio will be calculated as 

0.6315 which after rounding off is approximately equivalent to a non-uniform 2:3 pixel distribution 

([pixel-width]:[pixel-height] or two vertical pixels versus three horizontal pixels). If an object appears 

between 500 to 2500 mm (Table 2 – row 3) the optimal aspect ratio will be 0.2687, which is close to a 1:4 

pixel discretization. Figure 8 shows these two non-uniform pixel distributions. It is well known that the 

human visual system is less sensitive to depth discrimination for distant objects. Thus, for a 3D scene 

composed of multiple objects at various distances, the quality of closer objects has bigger impact on the 

overall visual impression. 

 

Figure 8: Non-uniform pixel distribution. Left: 2:3 discretization i.e. three horizontal pixels vs. two 

vertical pixels. Right: 1:4 discretization.  
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5.2. USER TESTS WITH 3D MODELS AND ANALYSIS 

We conducted a set of user tests to compare our theoretical results with subjective user evaluations. For 

simplicity, we restricted ourselves to a parallel stereo setup, but the same approach can be applied for 

conducting user tests under a stereo setup with vergence. Since we used conventional 2D displays in our 

subjective studies and it was impossible to adjust the actual pixel aspect ratio on these screens, we needed 

to devise some techniques to simulate different non-uniform discretizations along the horizontal and 

vertical axes. For this purpose we established a virtual stereo imaging system with arbitrary sized 

rectangular pixels. This virtual stereo imaging system accepts 3D structure descriptions such as 3D 

triangular meshes or 3D point clouds and generates different stereo projections. On the display side, we 

used a group of neighbouring pixels on a conventional display to simulate different aspect ratios. For 

example, a set of 5x5, 6x4, or 8x3 neighbouring pixels can be grouped together as a single pixel to 

simulate 1:1, 2:3, and 3:8 pixel aspect ratios while the total resolution is kept almost the same for these 

three combinations (see Figure 9 for a pictorial description of this process). Although this method is a bit 

restrictive in term of selecting any arbitrary pixel aspect ratio, it is a very simple, inexpensive technique 

for simulating different pixel aspect ratios (PARs). We also used this technique to create test sets from 

real stereo images. We used pure red and blue colors for generating the left and right views, respectively. 

A pair of simple anaglyph red-blue glasses was used by the viewers to conduct the right and left views to 

the corresponding eye. 

Figure 9: Simulating different pixel aspect ratios by grouping neighboring pixels as a single pixel while 

preserving the same total resolution by devoting almost the same number of pixels to each virtual pixel in all three 

configurations. Left: 3:8, Middle: 2:3, and Right: 1:1 pixel aspect ratio. 
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Experiment 1 - User Tests with Synthetic Stereo Images -  Figure 10 shows a set of three red-blue 

images generated from a synthetic 3D model with three different pixel aspect ratios ─ 3:8, 2:3 and 1:1. 

These images are generated using our virtual stereo imaging system. The advantage of using synthetic 

scenes is that the properties of the scene can be defined according to the targeted evaluation criteria. Here, 

the model is composed of a set of 3D points which collectively describe a sphere with a radius of 19 cm 

and an ellipsoid with semi-minors of 50, 15, and 35 cm. The centers of the sphere and ellipsoid are 

located at a distance of 40 and 80 centimetres respectively from the stereo camera. Two arbitrary rotations 

are also applied to the ellipsoid. The colors (intensities) are randomly assigned to the 3D scene points but 

geometric shape of the objects is preserved by assigning the same color to points located on the same 

orbit. For this test set, the imaging system is configured using the values shown in Table 1. Considering 

the depth range filled by these two objects, the theoretical optimal aspect ratio is given by the first row in 

Table 2, i.e. 0.6315, which is almost equivalent to an aspect ratio of 2:3 – the ratio that is used to generate 

the middle image in Figure 10.  

We used the images shown in Figure 10 to conduct our first set of user tests. These images were 

numbered from 1 to 3 from left to right. We followed the 3D visual experience model proposed in [16], 

and asked the viewers to rank the images according to three criteria: sense of depth, picture quality and 

overall sense. Sense of depth represents how objects are distinguishable and well-shaped across the depth 

dimension. Picture quality refers to the quality of the perceived image which may be influenced by 

several factors such as blockiness, brightness, noise and blurriness. Here, the picture quality is affected 

Figure 10: Red-blue stereo pairs generated from a synthetic 3D scene with different aspect ratios. Left 3:8 (pixel 

width: pixel height), middle 2:3, and right 1:1. 
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mainly by the non-similar discretization across the vertical and horizontal dimensions. Overall sense 

measures a viewer’s overall satisfaction with each of these three 3D representations. 

Figure 11: Results of conducting subjective tests with images shown in Figure 10. 

 

Sense of Depth 
 

 Groups Count Sum Avg Var 

 Image 1 90 147 1.63 0.64 
 Image 2 90 195 2.17 0.54 
 Image 3 90 198 2.20 0.63 
 

 

 ANOVA: Single Factor 

 Source of Variation  SS df MS 

 Between Groups 18.2 2 9.1 
 Within Groups 161.8 267 0.61 

 F = 15.02  Fcritical = 3.03 P-value = 6.6E-07 

 
Picture Quality 
 

 Groups Count Sum Avg Var 

 Image 1 90 204 2.27 0.83 
 Image 2 90 180 2.00 0.36 
 Image 3 90 156 1.73 0.69 
 

 

 ANOVA: Single Factor 

 Source of Variation  SS df MS 

 Between Groups 12.8 2 6.4 
 Within Groups 167.2 267 0.63 

 F = 10.22  Fcritical = 3.03 P-value = 5.29E-05 

 
Overall Sense Preference 
 

 Groups Count Sum Avg Var 

 Image 1 90 180 2.00 0.72 
 Image 2 90 159 1.77 0.49 
 Image 3 90 201 2.23 0.70 
 

 

 ANOVA: Single Factor 

 Source of Variation  SS df MS 

 Between Groups 9.8 2 4.9 
 Within Groups 170.2 267 0.64 

 F = 7.69  Fcritical = 3.03 P-value = 0.000568 
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 Fifteen subjects (university graduate students) participated in our experiments. None of them were 

aware of the judgments made by other participants and did not know the parameters used to create these 

three images. Before ranking, we asked all participants to describe the reconstructed 3D scene to make 

sure that all of them were able to clearly perceive the 3D scene composed of the ellipsoid and the sphere 

in front it. Then we asked them to look at the 3D pictures as many times as they needed to decide on the 

rankings. Since the entire screen was needed to display an image, the viewers were asked to switch 

forward and backward to view all three images for comparison. A 14.1” display with 1280x800 resolution 

is used for this experiment. 

The pie charts in Figure 11 illustrate the result of this subjective study. The figure also presents some 

statistics for each evaluation criterion including mean and variance in each group (image) and results of 

analysis of variance (ANOVA test) for comparing means of groups. These results suggest a correlation 

between the sense-of-depth and pixel aspect ratio. As depicted in the top-left graph, 57 percent of viewers 

have the best sense of depth with Image 1 which has a pixel aspect ratio of 3:8, 20 percent have the best 

sense of depth in Image 2 with pixel aspect ratio 2:3, and 23 percent selected Image 3 with a regular 1:1 

pixel aspect ratio. In other words, a majority of the viewers preferred Image 1, which has the finest 

horizontal resolution, as their first choice. As suggested by ANOVA test it is very unlikely (P-value = 

6.6E-07) that the results obtained for Image 1, Image 2, and Image 3 to be belong to the same distribution. 

In other words, it is very unlikely that users have selected images by chance. On the average, Image 1 is 

selected as the first choice with significant difference and Image 2 as the second preference, even though 

the difference between Image 2 and Image 3 is not statistically significant. This result, in general, is 

consistent with our theoretical results that images with horizontally finer resolution provide better 

sensation of depth. Some environmental and individual factors may explain why some people (the 

minority) preferred Image 3. Since the human visual system varies from one person to another, we could 

not fix a viewing distance for the best stereo effect. During the experiments, the viewers’ body positions 

and movements could have affected the visual effect. Also, the capability of perceiving stereo effect 

varies among the subjects. The small visual differences between the images might not be detectable to all 
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viewers. For small visual differences, it is worth mentioning that there were circumstances where the 

viewers could not distinguish the sense of depth between two images. In these cases, we assigned equal 

ranking to both images.  

For ranking against picture quality (Figure 11 second row), viewers were asked to rank images 

regardless of any perception of depth. Again, the results show meaningful but reverse relationship 

between pixel aspect ratio and picture quality. More than 50 percent selected Image 3 for the best picture 

quality. As discussed earlier in Section 3, this may be the result of image degradation that happens in the 

vertical direction when the discretization becomes coarser in that direction, and as a result the Y 

component estimation error might be increased. However, this trade-off of obtaining finer horizontal 

discretization by sacrificing some quality in the Y component improves both the X and Z components, and 

therefore the viewers have better overall sense in Image 1 and Image 2 which have non-uniform 

discretization (Figure 11 third row). We observe in Figure 11 that in terms of overall sense, Image 2 with 

aspect ratio 2:3 was the first or second choice for most of the viewers. This result illustrates certain 

compromise in the viewers’ decisions towards the trade-off between sense of depth and picture quality. It 

should be noted that the ANOVA test again rejects the null hypothesis of obtaining these results by 

(d) 
 

(b)  

Figure 12: Samples generated from the Chinese Dragon 3D point cloud. (a) Original 3D object (red channel 

projection), (b) 1:4, (c) 1:1, and (d) 4:1 pixel aspect ratios. 

(a) 

(c) 
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chance for both picture quality (P-value = 5.29E-05) and overall sense preference (P-value =0.000568) 

criteria. 

Figure 12 represents more clearly the image quality degradation in the vertical or horizontal direction 

for a coarser discretization. These images are generated from Chinese Dragon 3D point cloud using our 

virtual stereo imaging system with 1:4, 1:1, and 4:1 pixel aspect ratios, respectively, with the same total 

resolution. For the 1:4 image (Figure 12-b) the discretization is more apparent along horizontal lines. For 

example, observe the horizontal supplementary tail over the vertebral line of the dragon. On the other 

hand, for the 4:1 image (Figure 12-c) the degradation is more apparent along vertical lines. Observe the 

dragon’s vertical tail as an example. Both these images reveal lower image quality in some parts compare 

to the uniform pixel discretization in the 1:1 image (Figure 12-d). In general, for complex scenes 

composed of a set of edges, line, or textural features, depending on the feature directions, non-uniform 

pixel discretization may degrade the picture quality in parts while quality may be improved in some other 

areas. However, since a finer resolution on the horizontal direction also improves 3D estimation (sense of 

depth), in overall, a better 3D picture is experienced when an appropriate aspect ratio is selected. 

Experiment 2 – User Tests with Real Stereo Images – We conducted a second round of user tests to 

study the effects of pixel aspect ratio on 3D perception using real stereo scenes and objects. We simplified 

evaluation criteria in this experiment and asked the users to compare the images just in term of their 

overall personal preference. Instead, we used several scenes in this experiment. As already mentioned, we 

used pixel grouping technique to create images with different PARs from real stereo images. For each 

scene, stereo pairs with different pixel aspect ratios but the same total resolution were generated and the 

Figure 13: Set of images used in experiment 2 – user evaluation with real images and objects. 

(a) Aloe (b) Bowling (c) Rocks (d) VP (e) Chinese dragon 
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users were asked to choose their preferred ones in a pair-wise manner. More precisely, assuming that I1, 

I2, and I3 are the three stereo images generated for scene S with three different PARs 1:1 (5x5), 2:3 (6x4), 

and 3:8 (8x3), we created three pairs I1I2 (or I2I1), I2I3 (or I3I2), and I1I3 (or I3I1) of these images (the order 

of images are picked by random). Images (b), (c), (d), and (e) of Figure 13 are used for generating these 

test cases. We put all these pairs together and shuffled them to form the test set. We enriched the test set 

by randomly interleaving some other cases that were generated with some finer total resolutions to 

examine how users will treat the images when the noise introduced by pixel grouping technique is less 

apparent. These finer test cases were generated from images (a), (b), (c), and (d) of Figure 13.  These test 

cases were generated by grouping 4x4 and 5x3 pixels to examine 1:1 PAR versus 3:5 (~2:3) PAR, and by 

grouping 3x3 and 4x2 pixels to compare 1:1 PAR versus 1:2 PAR. 

Overall Personal Preference 
 

 Groups Count Sum Avg Var 

 PAR 3:8 49 133 2.71 0.29 
 PAR 2:3 49 71 1.45 0.34 
 PAR 1:1 49 90 1.84 0.56 
 

 

 ANOVA: Single Factor 

 Source of Variation  SS df MS 

 Between Groups 41.18 2 20.59 
 Within Groups 56.82 144 0.39 

 F = 52.19  Fcritical = 3.06 P-value = 8.99E-18 

 Figure 14: Results of subjective tests using real 3D scenes. 

 

Figure 15: Results of subjective tests on real 3D scenes for different scenes used in experiment. 
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Thirteen subjects are participated in this experiment, majority of them university graduate students. 

During the test, the users are asked to show their preference toward one of the stereo images in each pair. 

Similar to Experiment 1 we did not enforce any time limit but all subjects spent almost the same amount 

of time (between 25 to 30 minutes) to evaluate all cases. We also did not enforce a specific viewing 

distance but we recommended the viewing distance of 70-80 cm considering that we were using a wider 

display screen (19” display) in this experiment. 

Figure 14 shows the user evaluation results for 5x5, 6x4, and 8x3 groupings with some associated 

statistics. As can be seen from the pie charts, the results are greatly different for these three groups in 

favour of the images with pixel aspect ratio 2:3 (6x4 pixel grouping). The outcome of the ANOVA test (F 

= 52.19, P-value = 8.99E-18) also confirms the substantial difference between groups. PAR 2:3 not only 

has been selected as the first choice by many viewers (59%) but also rarely has been the third choice of 

viewers (4%). In other words, in 96% of cases images with PAR 2:3 are selected either as first or second 

preferred image. 

In contrast to the results of Experiment 1 (synthetic scene), here images with PAR 1:1 (i.e. images with 

uniform pixel distribution) have mainly owned the second place (43%) and images with PAR 3:8 have 

often been selected as the least favourite ones (76%).  This can be explained by the way that pixel 

grouping technique treats image features. In fact, since the real images we have used in this experiment 

possess more textural or structural features, comparing to the simple synthetic scene of Experiment 1 that 

is composed of poorly featured geometrical objects, they are more prone to the noise introduced by 

sharper simulated PARs. 

Figure 15 shows a more detailed representation of the results presented in Figure 14 pie charts. The line 

charts of this figure show how different scenes are treated by viewers. In general, the drawings show a 

consistent behaviour toward all four different scenes that are used in this experiment. However, the results 

seem to be a little affected by the scene structures. For example, the users have had tendency to select the 

Rocks scene with more horizontally oriented edges and textural features, as their first choice than the VP 
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scene with more vertically aligned structures. However, the differences are not that much that contradicts 

each other and the expected theoretical results. 

We separately analysed the results of test cases with finer total resolution. For 3x3 verses 4x2 test 

cases, 54% of viewers were in favour of images with uniform pixel distribution (3x3, 1:1 PAR). We did 

not find statistically significant difference between these two groups. However, at least we can say that 

the images with 1:2 PAR (4x2) with less apparent pixel grouping noise have received much more 

attention when they are compared with the images of corresponding uniform pixel distribution than 

images with 3:8 PAR (8x3). For 4x4 versus 5x3 cases we found that 63% of viewers were in favour of 

images with non-uniform pixel distribution (5x3, 3:5 PAR) with statistically significant difference 

between two groups (paired T-Test P-value = 0.01). These results are consistent with the results obtained 

for images with the same PARs but coarser total resolution (see pie charts in Figure 14). 

 

5.3. EFFECTS OF VERGENCE ON 3D VIEWING 

In order to study the benefit of vergence in 3D viewing we compared the effect of visualization at close 

range with and without vergence. Figure 17 shows a test set generated for the Bunny 3D mesh under 

parallel camera configuration. As depicted in this figure the amount of disparity for this small model is 

quite large. This makes it difficult for some people to easily merge the left and right views and causes eye 

stress after a short time. Vergence can help control the amount of disparity in the stereo output. Even with 

a small vergence angle the amount of disparity is significantly affected. Figure 17 shows the images 

generated for the same model as in Figure 16, but incorporating a vergence angle of around 3 degrees. 

These images are much easier to fuse together for a human observer. However, vergence influences the 

3D output in several ways. In fact, the amount of disparity affects the extent of “popping-out-of” or 

“sinking-into” the screen. In other words, focusing in front of the object moves it farther away and 

focusing at the back of the object brings it closer to the 3D display viewer. Although these effects may 
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help provide enhanced impressions for some 3D content, they may also cause some undesired side-effects 

such as improper scale or unnatural shape [6]. 

 

6. CONCLUSION AND FUTURE WORK 

We described a theoretical model for determining the trade-off between vertical and horizontal 

resolutions when viewing a 3D scene in stereo. The optimization procedure discussed in this paper is 

based on mathematical modeling. We inferred optimal PARs by considering two commonly used stereo 

setups: parallel and with vergence, and showed how optimal PAR is related to the corresponding stereo 

configuration parameters. Using the formulations derived, we showed that although the optimal PAR may 

(a) (b) (c) 

(d) 

Figure 16: Samples generated from Bunny 3D mesh in parallel camera 

configuration. (a) Original 3D object (blue channel), (b) 3:8, (c) 2:3, and (d) 

1:1 pixel aspect ratio. 

(a) (b) (c) 

Figure 17: Samples generated from Bunny 3D mesh, with vergence being included. (a) 3:8, (b) 2:3, and (c) 1:1 

pixel aspect ratio. 
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considerably vary with different parameter values, in general, for a given total resolution a more dense 

distribution of pixels along the horizontal direction often improves the sense of depth and overall output 

quality of the 3D display. Applying practical parameter values into inferred equations, we theoretically 

suggested that a pixel aspect ratio of 2:3 ([pixel width]:[pixel height]) will lead to a better stereo-based 

3D viewing experience. We validated the theoretical results through conducting subjective user 

experiments on both synthetic and real stereo content with different simulated pixel aspect ratios. Our 

experiments showed that from a subjective point of view the suggested optimal PAR indeed improves the 

3D output.  

Our method of simulating different PARs using pixel grouping introduces noticeable blockiness into 

images. In this regard, it will be interesting to incorporate the concept of Just Noticeable Difference 

(JND) for 3D perception [22] to see how the results may change. We expect that the whole effect of 

applying optimal PAR on a high-resolution display lead to a noticeable improvement on the overall 3D 

output quality, even though, the user may not be able to separately distinguish the pixels of such high-

resolution displays (similar to 2D displays that overall quality improves by increasing the resolution even 

if the pixels are not distinguishable by viewers). It should also be clarified that the optimal PAR greatly 

improves the resolution across the depth dimension. This is very important for many interactive stereo-

based 3D applications that usually suffer from low pointing accuracy across the depth. Optimal PAR 

facilitates more accurate 3D pointing and hence more accurate 3D interaction and manipulation [27]. 

It will be also interesting to incorporate other factors such as different viewing conditions, human 

perceptual factors [17][18][19][20], motion factors [21], and error measures produced by cross-talk, 

correlation, and epipolar constraints [23][24], in order to derive more advanced models. Such models can 

also take into account the relative importance of vertical vs. horizontal disparities for the human visual 

system, and incorporate an image quality metric to reflect the picture quality changes caused by non-

uniform discretization. Moreover, our brief discussion on various aspects of introducing vergence into the 

system can also be extended especially for large vergence angles and for scenes composed of multiple 

objects with cameras focused on one of these objects. 
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The approach developed in this study could be extended to understand the cause of the anisotropy 

[25][26] present between horizontal vs. vertical depth perception through stereo (or motion induced 

stereo) in humans. Our analysis shows that considering practical 3D viewing distances, uniform 

distribution of pixels on a sensor (display) produces better reconstruction results for the horizontal axis, 

when the stereo baseline is along the horizontal axis. However, the analysis needs to be extended taking 

into account the spatially varying distribution of cones in the human eye and possibly issues like “depth 

consistency” in human perception. Finally, the analysis in this paper could be made more geometric by 

considering “volumes of uncertainty” extending the approach discussed in [10]. 
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Appendix A 

 

Derivation for Result 3: 
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where I0 is independent of ex, and thus has no influence on the minimization of Fp(ex). 
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where I1 to I4 are integrals defined in Result 3.  

Considering the derivative of Fp(ex) in terms of ex and equating it to zero, we have: 
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Since we cannot take ex = 0 as the optimal point, we should have: 
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Solving this equation in terms of ex, and again considering that we cannot take negative values for ex  as 

the optimal point, we obtain the following equation (or Equation 29) as the possible optimal point: 
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For ease of reference in the rest of the argument, we have renamed the value of ex in above equation as 

exOpt. Now, we need to show that Fp(exOpt) is the only minimum value of Fp(ex) over the domain of 

possible values for ex (as we discussed earlier in Result 1, the domain of possible values for ex is the open 

interval (0,∞) ). For this purpose, first we show that Fp(ex) has a local minimum at exOpt under the 

specified assumptions, and then we show that it does not take any other minimum over the (0,∞) interval. 

We use the second derivative test to show that Fp(ex) has a local minimum at exOpt : 
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Replacing I1 and I2 with their definitions we have: 
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If   0
xOptp eF then Fp(ex) has a local minimum at exOpt . Since the first factor in the above equation is 

positive this condition implies that the second factor is positive. In other words, we should have: 

    0lnln minmax0minmax  ZZZZZ  

or equivalently, 

0

minmax

minmax

lnln
Z

ZZ

ZZ




 . 

This condition is not hard to achieve since in practice Z0 is a small value comparing to Zmin and Zmax and 

the denominator of the left-side fraction grows much slowly than its numerator. As result, a reasonably 
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large viewing volume in the direction of the Z axis easily satisfies this condition and so Fp(exOpt) will be a 

local minimum under this assumption. 

Following the same procedure as above for the other two extrema (i.e., ex = 0 and ex = -exOpt), it is not 

difficult to show that under the same assumption Fp(0) and Fp(-exOpt) are local maximum and local 

minimum, respectively. Therefore, considering that Fp(-exOpt), Fp(0), and Fp(exOpt) are the only local 

extrema of function Fp(ex), Fp(exOpt) should be the only minimum (or equivalently a global minimum) over 

open interval (0,∞).  

 

Derivation for Result 4: 
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Case I) Zint ≤ Zmin 

Considering the equations in AR5 (page 16), the integral in Equation 34 should be calculated according 

to the following range of values: 
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where again I0 is independent of ex and has no effect on optimization of Fv(ex), and  I1 to I4 are defined as 

in Result 3. 
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Solving the last equation in terms of ex and again considering that we cannot pick negative values as the 

optimal point, the value given in Equation 37 is obtained. To show that the function Fv(ex) takes a 

minimum value at this point and this is its global minimum value over the allowable values for ex, we 

calculate the second derivative of Fp(ex) at this point: 
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Recalling the expression in Equation 37 as exOpt, the value of second derivative of Fv(ex) at exOpt is 

calculated as: 
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Considering the definitions of I1 and I2 and also noting that (∆Xint – bx) is greater than zero, we can see 

that  
xOptv eF   is greater than zero. As a result, Fv(exOpt) is a local minimum for Fv(ex). Following the same 
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procedure for the other two extrema, it is not difficult to show that Fv(0) and Fv(-exOpt) are local maximum 

and local maximum, respectively. Since Fv(-exOpt), Fv(0), and Fv(exOpt) are the only extrema of Fv(ex), we 

can say that Fv(exOpt) is a global minimum over the interval (0,∞). 

 

Case II) Zmax ≤ Zint 

In this case following integral should be calculated: 
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. 

Similar to Case I, calculating the derivative of Fv(ex) and equating it to zero gives the result. To show that 

the expression obtained, i.e. Equation 38, minimizes Fv over the domain of allowable values for ex, the 

same argument as in Result 3 should be applied. The assumption of choosing a large enough volume 

along with the Z dimension is also needed to be considered for this case. Because of many similarities 

with the derivation for Result 3 the details are skipped here. 

 

Case III) Zmin < Zint < Zmax 

In this case the integral in Equation 34 should be divided into two parts as follow. The other steps are 

similar to the Cases I and II and are skipped here. 
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